

Shaheed Zulfikar Ali Bhutto Institute of Science & Technology

Industrial Automation Lab Portfolio

Courses Covered:

Industrial Automation Microcontroller Based Systems Power Electronics Mechatronics System Design

Lab Engineer: Engr. Muhammad Nabeel

Date Revised: 25-Jan-2019

Pictorial View Of Lab

1. CNC Lathe

Figure 1: ST/6 Rhino CNC

Concerned Course	Industrial Automation
List of	1. Manual CNC Control Experiment
Experiments	2. Auto Control CNC with GCODE Experiment
	3. Threading on Aluminum Bar Experiment

2. Servo System

Concerned Course	Industrial Automation
List of Experiments	 Operation of Servo System Experiment Closed Loop Servo Experiment Analog Control Experiment Pulse Train Control Experiment Torque Control Experiment Servo With AD-tech Controller Experiment

3. CNC 4 Axis Controller

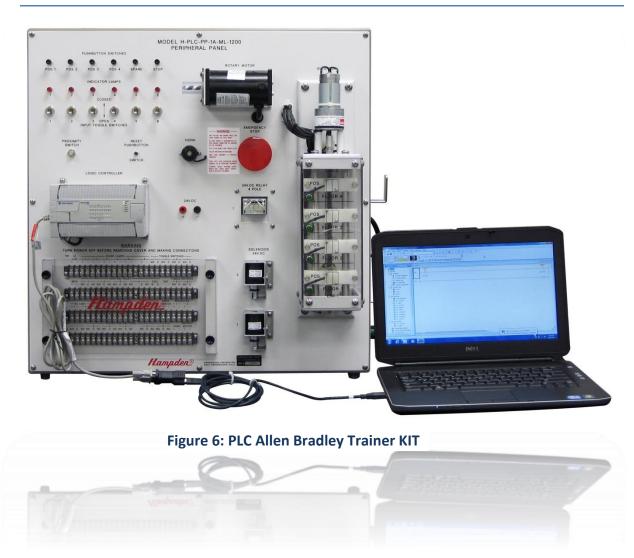
他对位置	+0035.282	N 05 1981	E 0		
¥	+0055.449	T 0001 2014	200 500 100% 20 0		
	+0010.084	文件名:0000.cwc		A.	
	+0001.652	901X09/07/04/08/00/07 9000 001X1009/100210041008 1.000 901X-1009-1002-1004-	1000100 1		
690 654 680 698	G49:H00 = 000	0.000 N: 0:00 N:			
停止状态 <<<	位置 轨迹 !	MDI 辅助功能 宏变量 参	t 0 >>>		D) 🔤 🖬 💷 (
		3 F4 F5	F6 ►		

Figure 3: ADTECH 4940 CNC Controller

Concerned Course	Industrial Automation
List of	1. Manual Servo Control Experiment
Experiments	2. Servo Control with G-code Experiment
	3. Closed Loop Integration Experiment
	4. Multiple I/O Experiment
	5. Macro Code Experiment
	6. Spindle Control Experiment

4. Delta HMI

Course


List of	1. HMI Design Experiment
Experiments	2. HMI Interfacing With PLC Experiment
•	3. HMI Graphical Animation Experiment

5. PLC Siemens

Concerned Course	Industrial Automation
List of	1. Digital I/O Interfacing Experiment
Experiments	2. Analog I/O Experiment
	3. Timer/Counter Experiment
	4. HMI Interfacing Experiment
	5. PID Control Experiment

6. PLC Allen Bradley

Concerned Course	Industrial Automation
List of	1. Digital I/O Experiment
Experiments	2. Dc Motor Control Experiment
	3. Proximity Sensor Experiment
	4. Sensors/Actuators Experiment
	5. Timer/Counter Experiment
	6. Lift Control Experiment

7. 3D Printer

Concerned Course Industrial Automation, Mechatronics System Design

List of
Experiments

1. Part Design Experiment

2. Part Manufacturing Experiment

8. Midas MDA Multi-Kit Trainer

Figure 8: MDA Multi Kit Microcontroller Trainer

Concerned Course	Microcontroller Based Systems		
List of	1. Led display Experiment		
Experiments	2. Traffic Signal Control Experiment		
	3. FND Display Experiment		
	4. Text LCD Display Experiment		
	5. ADC Experiment		
	6. DAC Experiment		
	7. Sound Experiment		
	8. DC Motor Control Experiment		

9.Stepper Motor Control Experiment	
10.Key Matrix Experiment	
11.Rotary Switch Experiment	
12.Digital Clock (DS1302) Experiment	
13.12C Communication Experiment	
14.Digital Thermometer (DS1620) Experiment	
15.UART Communication Experiment	
16.32X16 Dot Matrix Display Experiment	
17.SPI Communication Experiment	

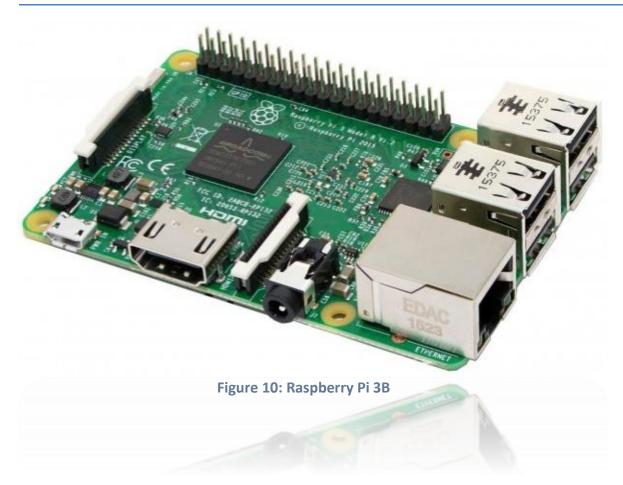

9. Arduino

Figure 9: Arduino MEGA

Concerned Course	Microcontroller Based Systems
List of	 Various Experiments of Digital I/O Interfacing
Experiments	(i.e. relays, sensors etc.)
	2. Various Experiments of Analog I/O Interfacing
	(i.e. temperature sensor, moisture sensor, humidity sensor etc.)
	3. PWM Based Experiment
	4. I2c Communication with DS3231 Real Time Clock Experiment
	5. UART Communication with Wi-Fi module ESP8266 Experiment
	6. UART Communication with Bluetooth Module HC-05 Experiment
	7. LCD 16x2 Interfacing Experiment

10. Raspberry Pi

Concerned Course	Microcontroller Based Systems
List of	1. Various GPIO Experiments
Experiments	2. I2c Real Time Clock Experiment
	3. SPI Communication Experiment
	4. LCD 16x2 Experiment
	5. 3.2" touch TFT LCD Experiment
	6. UART Communication Experiment
	7. Socket Communication Experiment
	8. GUI-Tkinter Experiment

11. IOT Equipment

Concerned Course	Microcontroller Based System
List of	 IOT (Internet of things) experiment
Experiments	 Cloud Data Base Server Experiment Google Real Time Database Experiment

12. Motion Sensing

Figure 12: Leap Motion

Concerned Course	Mechatronics System Design
List of	1. Cursor control Experiment
Experiments	2. Experiment to Control RPi GPIO

13. Power Electronics Trainer

Figure 13: Power Electronics Trainer Kit

Concerned Course	Power Electronics
List of	1. UJT Experiments:
Experiments	 1.1. Characteristics and applications of photoconductive detectors 1.2. UJT Characteristic & Equivalent Circuit 1.3. UJT Oscillator Circuit & Timer Switch 1.4. UJT introduction 1.5. UJT characteristic 1.6. CDS trigger, RTH trigger 1.7. UJT relaxation oscillator
	2. Power Supply Unit Experiments2.1.DC voltage measurement
	2.2.Ac Motor controlling Experiment 2.3.Dc Motor controlling Experiment

- 3. PUT Experiments:
 - 3.1.PUT Characteristic & Equivalent Circuit
 - 3.2.PUT Oscillator Circuit & Timer Switch
 - 3.3.PUT introduction
 - 3.4.PUT characteristic
 - 3.5.PUT equivalent circuit
 - 3.6.CDS trigger
 - 3.7.RTH trigger
 - 3.8.PUT circuit oscillator
 - 3.9.PUT timer switch
- 4. SCR Control DC Motor & DIAC, TRIAC Experiments:
 - 4.1.TRIAC trigger mode
 - 4.2.TRIAC static measurement
 - 4.3.DIAC, TRIAC Characteristic Experiment
 - 4.4.SCR cut-off principle
 - 4.5.SCR control DC motor forward / reverse control experiment
- 5. Over /Under Voltage Breaker and Flasher Control Experiments:
 - 5.1.Over/Under Voltage Breaker Experiment
 - 5.2.Flasher Control Experiment
- 6. TRIAC Liquid Level & IC Timer Switch Experiments:
 6.1.TRIAC liquid level control experiment
 6.2.NE 555 IC circuit introduction
 6.3.IC timer switch experiment

7. SCS Experiments:

- 7.1.SCS Characteristic Experiment
- 7.2.SCS Trigger Circuit Experiment
- 7.3.SCS construction and operation mode
- 7.4.Use VOM meter measuring SCS
- 7.5.SCS Schmitt circuit
- 7.6.SCS simulate PUT circuit
- 7.7.CDS trigger
- 7.8.RTH trigger

14. QNET Mechatronics System Board

Concerned Course	Mechatronics System Design
List of	 Reading Encoder PID Implementation Forward and Inverse Kinematics Goal-directed line following using Image
Experiments	Processing

15. QNET Mechatronics Actuators Board

Figure 15: QNET Mechatronic Actuator Board for NI ELVIS

Concerned Course	Mechatronics System Design
List of	1. Observing characteristics and configuration of
Experiments	different motors such as:
-	1.1.Linear Brushed DC Motor
	1.2. PWM Brushless DC Motor
	1.3.Solenoid
	1.4.Stepper Motor
	1.5. Micro-servo Motor