

Shaheed Zulfikar Ali Bhutto Institute of Science & Technology

ThermoFluids Lab Portfolio

Courses Covered:

Thermodynamics Heat Transfer Fluid Mechanics

> Lab In-Charge: Engr. Rayan Isran Last Updated: 2nd February, 2019

Boyle's Law

Figure 1: Boyles Law Apparatus (Versatile Data Acquisition included)

Concerned Lab	Thermodynamics	
List of	Demonstration of Temperature change with	
Experiments	change in pressure.	
	 To compare actual test results with theory and 	
	confirm Boyles Law.	
	 To show the effect of quickly decompressing a 	
	fixed amount of gas in a sealed vessel.	

Gay Lussac's Law

Figure 2: Gay Lussa's Apparatus (Versatile Data Acquisition included)

Concerned Lab	Thermodynamics
List of Experiments	 To prove that pressure and temperature of a gas are directly proportional for a fixed volume of a gas. To prove Gay Lussac's Law.

Francis Turbine

Figure 3: Francis Turbine Apparatus

Concerned Lab	Fluid N	echanics
List of	• D	etermination of mechanical power
Experiments	р	roduced by the turbine.
	• D	etermination of efficiency of Francis
	Т	urbine.

Pelton Wheel Turbine

Figure 4: Pelton Wheel turbine Apparatus

Concerned Lab	Fluid Mechanics
List of Experiments	 Determination of mechanical power produced by the turbine. Determination of efficiency of Pelton Wheel Turbine.

Marcet Boiler

Figure 5: Marcet Boiler Apparatus (Versatile Data Acquisition included)

Concerned Lab	Thermodynamics
List of Experiments	 To observe the boiling process at different pressures. To prove that steam pressure in a closed vessel increases with its temperature. To show that the Marcet boiler experiment gives results that compare well with published steam tables. To compare actual results with theory and prove the relationship between temperature and pressure for saturated steam and the theoretical equations that link the two variables.

Pressure & Vacuum Measurement

Figure 6: Pressure Measurement Bench

Concerned Lab	Thermodynamics/Fluid Mechanics	
List of	٠	Calibration of Bordon Pressure Gauge
Experiments	•	Pressure and Vacuum measurement using Bench

Osborne Reynold's Demonstration

Figure 7: Osborne Reynold's Apparatus

Concerned Lab	Fluid Mechanics
List of Experiments	 To observe Laminar, Transitional and Turbulent flow To determine the upper and lower critical velocities at transitional flow To compute Reynold's number.

Bernoulli's Theorem

Figure 8: Bernoulli's Demonstration Apparatus

Concerned Lab	Fluid Mechanics
List of Experiments	 To determine the discharge coefficient of the Venturi meter. To demonstrate Bernoulli's Theorem

Energy losses in Bends & Pipe Fittings

Figure 9: Energy Losses in Bends & Pipe fittings

Concerned Lab	Fluid Mechanics
List of Experiments	 To measure the losses in the fittings related to flow rate and calculating loss coefficients related to velocity head.
	 To measure the losses through gate valve related to flow rate and calculating loss coefficients related to velocity head.

Fluid Friction Measurement

Figure 10: Fluid Friction Measurement

Concerned Lab	Fluid Mechanics
List of Experiments	 To determine the relationship between head loss due to fluid friction and velocity for flow of water through smooth bore pipes. To confirm the head loss predicted by pipe friction equation associated with flow of water through a smooth bore pipe. To determine the relationship between fluid friction coefficient and Reynolds' number for flow of water through a pipe having a roughened bore. To determine the head loss associated with flow of water through standard fittings used in plumbing installations.
	• To demonstrate the application of differential head devices in the measurement of flow rate and velocity of water in a pipe.

Vapour Compression Refrigeration Cycle

Figure 11: Vapour Compression Refrigeration Cycle

Concerned Lab	Thermodynamics/Heat Transfer
List of	Demonstration of Vapour Compression Cycle
Experiments	 To investigate the relationship between saturation pressure and temperature in the condenser. To investigate the effect of condensing and evaporating temperatures on the refrigeration rate and condenser heat output. To determine the compression ratio and its effect on system performance.

Steam Power Plant with Steam Engine

Figure 12: Steam Engine Apparatus

Concerned Lab	Thermodynamics/Heat Transfer
List of Experiments	 Demonstration the function of a steam engine. Investigate the effect of additional evaporation on load fluctuations. Demonstrating the effect that occurs when additional cold water is supplied.

Pipe Friction

Figure 13: Pipe Friction Apparatus

Concerned Lab	Fluid Mechanics
List of Experiments	 To determine the relationship between head loss due to fluid friction and velocity for flow of water through smooth bore pipes. To confirm the head loss predicted by pipe friction equation associated with flow of water through a smooth bore pipe demonstrating the effect that occurs when additional cold water is supplied.

Properties of Fluid and Hydrostatics

Figure	14:	Properties	of	Fluids	and	Hy	<i>drostatics</i>	Bench
--------	-----	-------------------	----	--------	-----	----	-------------------	-------

Concerned Lab	Fluid Mechanics
List of	To determine the density of a liquid.
Experiments	 To determine the specific gravity of liquid using universal hydrometer
	 To demonstrate the capillary effect in the capillary tubes and thin films
	 To determine the kinematics viscosity for different kind of fluid
	To demonstrate the Pascal's Law
	To demonstrate the Archimedes' Law
	 To determine the key parameters of a pontoon and to investigate its stability
	• To determine the center of pressure on both submerged and partially submerged plane surface.
	 To demonstrate the application of dead weight tester in bourdon pressure gauge calibration
	To demonstrate and compare the application of water and mercury manometer

Hydraulic Bench

Figure 15: Hydraulic Bench

Concerned Lab	Fluid Mechanics
Purpose	 To determine volumetric flow rate using volumetric method

Temperature measurement and Calibration

Figure 16: Temperature Measurement and Calibration unit

Concerned Lab	Thermodynamics
List of Experiments	 PRT Simulation, Constant voltage and Current PRT Simulation, Two, Three and Four wire Connection. PRT Calibration NTC Thermistor Linearity J and K Thermocouple Linearity Thermocouples in series and parallel
	Thermocouples and Seebeck effect

Thermal Conductivity of Liquids & Gases

Figure 17: Conductivity Apparatus for Liquids and Gases

Concerned	Heat Transfer
Lab	
List of	 To calibrate the unit by establishing the
Experiments	incidental heat transfer.
	 To determine the thermal conductivity of air and acetone

Linear and Radial Heat Transfer

Figure 18: Conductivity Apparatus for Linear and Radial Metals

Concerned Lab	Heat Transfer
List of Experiments	 To investigate Fourier's Law for the linear conduction of heat along a homogeneous bar. To study the conduction of heat along a composite bar and evaluate the overall heat transfer coefficient. To investigate the effect of a change in the cross-sectional area on the temperature profile along a thermal conductor. To examine the temperature profile and determine the rate of heat transfer resulting from radial conduction through the wall of a cylinder. To demonstrate the effect of surface contact on thermal conduction between adjacent slabs of material. To investigate the influence of thermal insulation upon the conduction of heat between adjacent metals.

Thermal Conductivity of Building Materials

Figure 19: Conductivity unit for different building materials

Concerned Lab	Heat Transfer
List of Experiments	 To determine the thermal conductivity of different building materials To determine the efficiency of insulating material

Free and Forced Convection

Figure 20: Free and Forced Convection Unit

Concerned Lab	Heat Transfer
List of	To demonstrate the relationship between power input and
Experiments	surface temperature in free convection.
	• To demonstrate the relationship between power input and
	surface temperature in forced convection.
	 To demonstrate the use of extended surface to improve
	heat transfer from the surface.
	• To determine the temperature distribution along an extend
	surface.

Radiation Heat Transfer

Figure 21: Radiation Heat Transfer unit

Concerned Lab	Heat Transfer
List of Experiments	 To show that the intensity of radiation on a surface is inversely proportional to the square of the distance of the surface from the radiation source To show that the intensity of radiation varies as the fourth
	power the source temperature.
	 To show that the intensity of radiation measured by the radiometer is directly related to the radiation emitted from a source by the view factor between the radiometer and the source
	 To determine the emissivity of radiating surfaces with different finishing, namely polished, arey and matt black
	• To demonstrate how the emissivity of radiating surface in close proximity to each other will affect the surface temperature and heat exchanged.
	 To determined validity of Kirchhoff's Law, which states that, the emissivity of a grey surface is equal to its absorptivity of radiation received from another surface when in a condition of thermal equilibrium
	• To demonstrate that the exchange of radiant energy from one surface to another is dependent upon their interconnecting geometry, i.e. a function of the amount that each surface can 'see' of the other
	 To show that the luminance of a surface is inversely proportional to the square of the distance of the surface from the light source
	• To show that the energy radiated in any direction at an angle with a surface is equal to the normal radiation multiplied by the cosine of the angle between the direction of radiation and the normal to the surface
	 To show that light passing through non-opaque matter is reduced in intensity in proportion to the thickness and absorptivity of the material.

Conduction & Convection

Figure 22: Heat Conduction & Convection Unit

 List of Experiments To study the conduction of heat and overall heat transfer along a composite bar. To experimentally prove Fourier's Law. To demonstrate the effect of surface contact on thermal conduction between adjacent slabs of material. To examine the temperature profile and determine the rate of heat transfer resulting from radial conduction through the wall of a cylinder. To study the temperature curves over the length for different materials. To observe the effect of flow velocity on the convective heat transfer coefficient. 	Concerned Lab	Heat Transfer
	List of Experiments	 To study the conduction of heat and overall heat transfer along a composite bar. To experimentally prove Fourier's Law. To demonstrate the effect of surface contact on thermal conduction between adjacent slabs of material. To examine the temperature profile and determine the rate of heat transfer resulting from radial conduction through the wall of a cylinder. To study the temperature curves over the length for different materials. To observe the effect of flow velocity on the convective heat transfer coefficient.